Ácidos Desoxirribonucleico

Escrito por Editor Visto: 38

Ácido desoxirribonucleico

El ácido desoxirribonucleico, frecuentemente abreviado ADN (y también DNA, del inglés DeoxyriboNucleic Acid), es un ácido nucleico que contiene las instrucciones genéticas usadas en el desarrollo y el funcionamiento de todos los organismos vivos conocidos y algunos virus. El papel principal de moléculas de ADN es el de ser portador y transmisor entre generaciones de información genética. El ADN a menudo es comparado a un manual de instrucciones, ya que este contiene las instrucciones para construir otros componentes de las células, como moléculas de ARN y proteína.

Los segmentos de ADN que que llevan esta información genética se llaman genes, pero otras secuencias de ADN tienen funciones estructurales, o están implicadas en la regulación del empleo de esta información genética.

Químicamente, el ADN es un largo polímero de unidades simples llamadas nucleótidos, con un armazón hecho de azúcares y grupos de fosfato unidos alternativamente entre sí mediante enlaces de tipo éster. Conectado a cada azúcar está cada uno de los cuatro tipos de moléculas llamadas bases nitrogenadas. La disposición secuencial de estas cuatro bases a lo largo de la cadena es la que codifica la información. Esta información es leída usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas. El código es interpretado copiando los tramos de ADN en un ácido nucleico relacionado, el ácido ribonucleico (ARN), en un proceso llamado transcripción.

Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas. Estos cromosomas se duplican antes de que las células se dividan, en un proceso llamado replicación de ADN. Los organismos Eukaryota (animales, plantas, y hongos) almacenan la inmensa mayoría de su ADN dentro del núcleo celular y una mínima parte en los ornánulos celulares mitocondrias, y en los cloroplastos en caso de tenerlos; mientras que en procarióticas (las bacterias y archaeas) se encuentra en el citoplasma de la célula. Las proteínas cromáticas como las histonas comprimen y organizan el ADN dentro de los cromosomas. Estas estructuras compactas dirigen las interacciones entre el ADN y otras proteínas, ayudando al control de las partes del ADN que son transcritas. Fue aislado por primera vez a partir del pus de vendas quirúrgicas deshechadas en 1869 por el médico suizo Friedrich Miescher.

Propiedades físicas y químicas [editar]

 

El ADN es un largo polímero formado por unidades repetitivas, los nucleótidos.[2] [3] Una doble cadena de ADN mide de 22 a 26 Ångströms (2,2 a 2,6 nanómetros) de ancho, y una unidad (un nucleótido) mide 3,3 Å (0,33 nm) de largo.[4] Aunque cada unidad individual que se repite es muy pequeña, los polímeros de ADN pueden ser moléculas enormes que contienen millones de nucleótidos. Por ejemplo, el cromosoma humano más largo, el cromosoma número 1, tiene aproximadamente 220 millones de pares de bases.[5]

En los organismos vivos, el ADN no suele existir como una molécula individual, sino como una pareja de moléculas estrechamente asociadas. Las dos cadenas de ADN se enroscan sobre sí mismas formando una especie de escalera de caracol, denominada doble hélice. El modelo de estructura en doble hélice fue propuesto en 1953 por James Watson y Francis Crick (el artículo Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid fue publicado el 25 de abril de 1953 en Nature).[6] El éxito de éste modelo radicaba en su consistencia con las propiedades físicas y químicas del ADN. El estudio mostraba además que la complementariedad de bases podía ser relevante en su replicación, y también la importancia de la secuencia de bases como portador de información genética.[7] [8] [9] Cada unidad que se repite, el nucleótido, contiene un segmento de la estructura de soporte (azúcar + fosfato), que mantiene la cadena unida, y una base, que interacciona con la otra cadena de ADN en la hélice. En general, una base ligada a un azúcar se denomina nucleósido y una base ligada a un azúcar y a uno o más grupos fosfatos recibe el nombre de nucleótido. Cuando muchos nucleótidos se encuentran unidos, como ocurre en el ADN, el polímero resultante se denomina polinucleótido.[10]

Componentes [editar]

Estructura de soporte:

La estructura de soporte de una hebra de ADN está formada por unidades alternas de grupos fosfato y azúcar.[11]

 

Enlace fosfodiéster. El grupo fosfato une el carbono 5' del azúcar de un nucleósido con el carbono 3' de otro

Su fórmula química es H3PO4. Cada nucleótido puede contener uno (monofosfato: AMP), dos (difosfato: ADP) o tres (trifosfato: ATP) grupos de ácido fosfórico.

Es un monosacárido de 5 átomos de carbono (una pentosa) derivado de la ribosa, que forma parte de la estructura de nucleótidos del ADN. Su fórmula es C5H10O4. Una de las principales diferencias entre el ADN y el ARN es el azúcar, pues en el ARN la 2-desoxirribosa del ADN es reemplazada por una pentosa alternativa, la ribosa.[9]

Las moléculas de azúcar se unen entre sí a través de grupos fosfato, que forman enlaces fosfodiéster entre los átomos de carbono tercero (3′, «tres prima») y quinto (5′, «cinco prima») de dos anillos adyacentes de azúcar. La formación de enlaces asimétricos implica que cada hebra de ADN tiene una dirección. En una doble hélice, la dirección de los nucleótidos en una hebra (3′ → 5′) es opuesta a la dirección en la otra hebra (5′ → 3′). Esta organización de las hebras de ADN se denomina antiparalela; son cadenas paralelas, pero con direcciones opuestas. De la misma manera, los extremos asimétricos de las hebras de ADN se denominan extremo 5′ («cinco prima») y extremo 3′ («tres prima») respectivamente.

Bases nitrogenadas:

Las cuatro bases nitrogenadas esenciales que se encuentran en el ADN son la adenina (abreviado A), citosina (C), guanina (G) y timina (T). Cada una de estas cuatro bases está unida al armazón de azúcar-fosfato a través del azúcar para formar el nucleótido completo (base-azúcar-fosfato). Las bases se clasifican en dos grupos: adenina y guanina son compuestos heterocíclicos de cinco y seis miembros unidos denominados purinas, mientras que citosina y timina son anillos de seis miembros denominados pirimidinas.[9] En los ácidos nucléicos existe una quinta base pirimidínica, denominada uracilo (U), que normalmente ocupa el lugar de la timina en el ARN y difiere de la timina porque le falta un grupo metilo en su anillo. El uracilo no se encuentra habitualmente en el ADN, sólo aparece raramente como un producto residual de la degradación de la citosina.

En el código genético se representa con la letra T. Forma el nucleósido timidina (dThd) y el nucleótido timidilato (dTMP). En el ADN, la timina siempre se empareja con la adenina de la cadena complementaria mediante 2 puentes de hidrógeno, T=A. La timina es una base orgánica nitrogenada de fórmula C5H6N2O2 y es un compuesto cíclico derivado de la pirimidina (es una base pirimidínica).

En el código genético se representa con la letra A. En el ADN siempre se empareja con la timina de la cadena complementaria, A=T. Es un compuesto orgánico nitrogenado de fórmula C5H5N5. Es un derivado de la purina (es una base púrica) en la que un hidrógeno ha sido sustituido por un grupo amino (-NH2). La adenina, junto con la timina, fue descubierta en 1885 por el médico alemán Albrecht Kossel.

En el código genético se representa con la letra G. La guanina siempre se empareja en el ADN con la citosina de la cadena complementaria mediante tres enlaces de hidrógeno, G≡C. Como la adenina, es una base púrica.

En el código genético se representa con la letra C. Es un derivado pirimidínico, con un anillo aromático y un grupo amino en posición 4 y un grupo cetónico en posición 2. Su fórmula química es C4H5N3O y su masa molecular es de 111,10 unidades de masa atómica. La citosina fue descubierta en 1894 cuando fue aislada en tejido del timo de carnero. La citosina siempre se empareja en el ADN con la guanina de la cadena complementaria, C≡G.

Se estima que el genoma humano haploide tiene alrededor de 3.000 millones de pares de bases. Para indicar el tamaño de las moléculas de ADN se indica el número de pares de bases, y como derivados hay dos unidades de medida muy utilizadas, la kilobase (kb) que equivale a 1.000 pares de bases, y la megabase (Mb) que equivale a un millón de pares de bases.

 

Ácido ribonucleico

El ácido ribonucleico (ARN o RNA) es un ácido nucleico, polímero lineal de nucleótidos formando una larga cadena. El eje de la cadena lo forman grupos fosfato y azúcares ribosa de forma alternativa del que toma su nombre. Los nucleótidos del ARN contienen el azúcar ribosa y entre sus bases nitrogenadas al uracilo, a diferencia del ácido desoxirribonucleico (ADN) cuyo azúcar es una desoxirribosa y contiene a la timina en vez del uracilo. La función principal del ARN es servir como intermediario de la información que lleva el ADN en forma de genes y la proteína final codificada por esos genes.Fue descubierto por Severo Ochoa.

El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es actualmente una pregunta sin respuesta.

ARN, el mensajero [editar]

Parte del ADN se transcribe en ARN. El ARN va como un mensajero al citoplasma y allí el ribosoma es el lugar físico para la traducción de los genes a proteínas que se enlazan.

Tipos de ARN

 

 

 

[]

 

Escribir un comentario


Código de seguridad
Refescar